Y in Practical Programs®
Extended Abstract

Bruce McAdam
bjm@dcs.ed.ac.uk
Laboratory for Foundations of Computer Science,
The University of Edinburgh,
EH9 3JZ UK

July 27, 2001

Introduction

For typical working programmers, the Y combinator for finding the fixed point of higher order
functions is seen, at best, as an idiosyncratic example of the features of functional programming
languages or, worse, not understood at all. We are going to see that it is actually useful in
programming development.

If we program recursive functions in a form that uses Y instead of the recursive constructs
built in at the language level then we gain control over and information about how programs are
executed. The examples we will investigate include creating memo functions (in languages with
mutable data), providing dummy or default results for failed function calls and building call trees
annotated with arguments and results.

As well as demonstrating the practical properties of this programming technique, we will see
an interesting property relating to the theory of sequential realisability [Lon99].

Y in programs

The Y combinator as it is usually expressed in the A-calculus is not suited to most programming
languages as it will not type check. There are two ways around this: either use the programming
language’s recursion construct, or (more esoterically) its recursive type construct. In Standard
ML [MTHMO97], Y is most easily written using fun, the recursive function construct

fun Y f x = f (Y f) x

This definition is frequently given to students on undergraduate programming courses, and some
even deal with the A-calculus version [FF95]. There does not, however, appear to be any evidence
that this is widely known to computing professionals.

To use Y to define a recursive program, we must write a function to fix. We will call this the
seed. Here is the seed for the factorial function

fun fact_ fact x = if x = 0 then 1 else x * (fact (x-1))

fact_ is the name of the seed. Its first argument, fact, will be the fixed function (which will
be the factorial function) and the final argument, x, is the value to find the factorial of. The
‘recursion’ in the seed comes from the use of fact.

The seed is fixed to create the working factorial function as follows

*This is based on material in [McA97].

val fact = Y fact_
This will yield a function equivalent to
fun fact x = if x = 0 then 1 else x * (fact (x-1))

Note the similarly between the definitions of fact and fact_. This indicates that there is no extra
work created for the programmer in using the technique.

Wrappers

Now that we have a seed, we will see what else we can grow from it. We can do this by using
wrappers. Here is a simple wrapper to print out intermediate results (using Standard ML’s side
effects).

fun printerWrapper f_ f x =

let

(* Find the result *) val result = f_ f x

(* Print it on a new line *) val _ = printInt result
in

(* Return the result *) result
end

We apply the wrapper as follows
val factPrint = Y (printerWrapper fact_)

Running this function will print a list of intermediate results to the screen.

It is not possible to directly code this wrapper in a programming language (such as Haskell)
lacking side effects. Instead monads would have to be used. The difficulties of using Y with
monads are discussed in [ELO00].

Applications

We have seen one wrapper for printing intermediate results. It is important to realise that the
effect was achieved without recompilation of the seed. This makes the programmers task easier
by separating the printing (which is usually temporary and intended to help debug programs
during development) with the actual action of the program. Because the seed does not need to
be recompiled, we can even apply wrappers to precompiled seeds without needing to access or
understand the original source code.

Memo functions
We can write a wrapper to add memory to a seed.

fun memoWrapper domain f_ f x =
let
(* Create mutable memory *) val mem = newMemory domain
in
case lookupMemory x of
SOME result => result (* already computed *)

| NONE =>
let
(* compute result *) val result = f_ f x
(* store in memory *) val _ = store (memory, x, result)
in

(* return result *) result
end
end

To create a memo factorial function, use Y (memoWrapper 100 fact_) (where 100 is to be the
limit of the memory domain). You can check that it really works by using Y (printerWrapper
(memoWrapper 100 fact.)).

Filling in missing results

A function may not always be able to give an answer. In this case it may return an optional
result (NONE or SOME value). We can write a wrapper to replace NONE with a default value (e.g. in
unification, when a recursive call fails we may wish to continue with the identity substitution.).

fun supplyDefault default f_ f x =
case f f_ x of
NONE => default (* optionally print an error message here *)
| SOME result => result

Note that the result returned by f_ is different from the result returned by supplyDefault f_.
Before wrapping the seed cannot be fixed as the type it returns is different from the type is expects
on ‘recursion’.

I have used this technique extensively with unification algorithms for type inference as an
alternative to exceptions.

Gathering Call Trees

We can record call trees (with arguments and results) in the following ML datatype

datatype (’arg, ’result) call_tree =
NODE of (’arg * ’result * ((’arg, ’result) call_tree list))

This wrapper gathers call trees

fun callTreeWrapper f_ f callTreeRef x =
let
val myRef = ref [] (* empty list of children)
val result = f_ (f myRef) x
val _ = callTreeRef := ((NODE(x, result, !myRef)) :: (!callTreeRef))
in
result
end

The wrapped seed takes one more argument than the original seed. After evaluation, the extra
argument (a reference) contains the call tree. For example if we execute

val factCallTree = Y (callTreeWraper fact_) ;
val treeRef = ref []
val fact0f10 = factCallTree treeRef 10

then !treeRef will be a list containing a single tree representing the computation of fact 10.

Some Theory — Sequential Realisability

The function callTreeWrapper cannot be written in a pure functional language (without changing
the type of the seed so it takes a state monad). It is however a pure function in the sense that
given the same pure functional argument, it will always return the same result.

Functions which are pure functions but which require non-functional features to be imple-
mented lie in the interesting set of sequentially realisable functions [Lon99].

Conclusions

We have had a brief introduction to programming with Y and wrappers. How they work, some
of their applications and some interesting properties. Overall, this demonstrates that fixed points
are of more than theoretical interest in Computer Science. It is hoped that these ideas should be
understandable to anyone with a knowledge of functional programming.

References

[EL00]

[FF95]

[Lon99]

[McA97]

[MTHMO97]

Levent Erkok and John Launchbury. Recursive monadic bindings. In Proceedings
of the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP’00, pages 174-185. ACM Press, September 2000.

Matthias Felleisen and Daniel P. Friedman. The Little Schemer. MIT Press, 3rd
edition, dec 1995.

John Longly. When is a functional program not a functional program. In International
Conference on Functional Programming, pages 1-7. ACM Press, 1999.

Bruce J. McAdam. That about wraps it up — Using FIX to handle errors with-
out exceptions, and other programming tricks. Technical Report ECS-LFCS-97—
375, Laboratory for Foundations of Computer Science, The University of Edinburgh,
James Clerk Maxwell Building, The Kings Buildings, Mayfield Road, Edinburgh, UK,
November 1997.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The Definition of
Standard ML (revised). MIT Press, 1997.

